IMF Datatools

In this tutorial, we will explore how to install IMF Datatools and access data in R.

IMF Datatools is a Python library that allows us to access various internal and external data sources, and retrieve data directly in R.

Pre-requisites

Since IMF Datatools is Python based, we first need download Python 3.11 or above from the IMF Software Center and install our Python library.

After you have downloaded Python 3.11 or the latest version from the IMF Software Center, open the Command Prompt. You can load this by typing “cmd” in the Windows search option, as shown below.

In the command prompt, type the following command to install Datatools.


python \\ecnswn12p\ems_shared\pub\datatools\installer.py dev

You should generate something similar to the following message when the installation is complete.

Loading the Python Interpreter

After Python 3.11 is downloaded and Datatools is installed, we need to load it into R Studio. To use IMF Datatools in RStudio, you need to set the location of your Python interpreter.

In the menu tab of R Studio, go to Tools, Global Options, choose Python and then select the interpreter from your computer. When you click select, it should automatically populate under system after download. Click Apply and OK.

Your R session will likely need to be restarted to ensure the changes take into effect. This process only needs to be done once.

Loading additional packages

To bridge the communication between R and Python, you will also need to install and load the reticulate package, only once.

#install.packages("reticulate")
library(reticulate)

Handling Dates in Reticulate

When using the reticulate package to work with IMF Datatools, it is important to note that reticulate interprets dates in UTC time by default. This can lead to incorrect date stamps when downloading data if your system time is set to a different timezone.

To prevent this issue, you must set your system timezone to UTC before retrieving data. You can do this in R by running:

Sys.setenv(TZ = "UTC")

Lastly, you will need to import the sys module and the IMF Datatools library for calling from R.

sys <- import("sys")
imf_datatools  <-  import("imf_datatools")

You should now be set up to use IMF Datatools in R Studio.

Further documentation on IMF Datatools can also be found at this link.

Datasets available in IMF Datatools

Understanding the available data

IMF Datatools has direct access to a plethora of internal and external databases like EcOS, Haver, EDI, and more. For exploratory work, you can view all the databases or import a specific database.

Let’s look at all the available databases.

#Get all databases 
dbnames <- imf_datatools$ecos_sdmx_utilities$get_databases()  

#Quickly view the top part of all the databases 
head(dbnames)
                                                                                                                                                                                                                            dbpath
ECDATA_ADCP_WB_QEDS                                                                             Databases/External Databases/International Organizations/World Bank (WB)/Quarterly External Debt Statistics Unified (ADCP_WB_QEDS)
ECDATA_ADCP_WB_WDI_ECDATA                                                                                              Databases/External Databases/International Organizations/World Bank (WB)/World Development Indicators (WDI)
ECDATA_ALBANIA                                                                                                                                                                                      Databases/Country Data/Albania
ECDATA_ANALYTIC_DATABASE_01182024                                                                                                 Databases/External Databases/International Organizations/OECD/Archive/Analytic Database_01182024
ECDATA_ANGOLA                                                                                                                                                                                        Databases/Country Data/Angola
ECDATA_ANNUAL_CENTRAL_GOVERNMENT_BOND_YIELDS_ACGBY Databases/Fiscal Affairs Department (FAD)/Eurostat/Interest Rates/Interest Rates - Historical Data/Central Government Bond Yields/Annual Central Government Bond Yields (ACGBY)

This encompasses a very long list. Let’s try to narrow it down to something more relevant.

#Import a specific library under IMF Datatools, e.g., EDI 
edi_utilities <- imf_datatools$edi_utilities

#Look at the available databases in EDI 
databases  <-  edi_utilities$get_databases() 
head(databases)
                              shortname
bloomberg                     Bloomberg
bop-published-latest                BOP
cofer-published-latest            COFER
consensus-forecast-timeseries CONSENSUS
csd-forecasts-ccx                CSDCCX
csd-forecasts-desk              CSDDesk
                                                                             description
bloomberg                                                         Bloomberg Data License
bop-published-latest           Balance of Payments and International Investment Position
cofer-published-latest        Currency Composition of Official Foreign Exchange Reserves
consensus-forecast-timeseries                               Consensus Forecasts (ECDATA)
csd-forecasts-ccx                                    CSD - Cross Country Exercises (CCX)
csd-forecasts-desk                                                       CSD - Desk Data
                              environment
bloomberg                      production
bop-published-latest           production
cofer-published-latest         production
consensus-forecast-timeseries  production
csd-forecasts-ccx              production
csd-forecasts-desk             production
                                                                                   primary_keys
bloomberg                                                            database/ticker/field/freq
bop-published-latest                                            database/country/indicator/freq
cofer-published-latest                                          database/country/indicator/freq
consensus-forecast-timeseries                                   database/country/indicator/freq
csd-forecasts-ccx                              database/exercise/country/indicator/vintage/freq
csd-forecasts-desk            database/country/indicator/exercise/vintage/vintagetimestamp/freq

This looks better. We can also use the glimpse function from the ‘dplyr’ package to have a more compact and structured overview of our data. This will show the structure of the data frame and previous any contents. Let’s try this for reference.

library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
glimpse(databases)
Rows: 18
Columns: 4
$ shortname    <chr> "Bloomberg", "BOP", "COFER", "CONSENSUS", "CSDCCX", "CSDD…
$ description  <chr> "Bloomberg Data License", "Balance of Payments and Intern…
$ environment  <chr> "production", "production", "production", "production", "…
$ primary_keys <chr> "database/ticker/field/freq", "database/country/indicator…

Let’s also take a look at the WEO country codes and groups.

#Get WEO country codes and groups 
countrydata <- imf_datatools$ecos_sdmx_utilities$get_weo_country_codes() 

#Take a glimpse at data
glimpse(countrydata)
Rows: 196
Columns: 38
$ `ISO-3 code`                                                                                                                     <chr> …
$ Code                                                                                                                             <chr> …
$ `ISO-2 code`                                                                                                                     <chr> …
$ `WB region`                                                                                                                      <chr> …
$ `WB capitalCity`                                                                                                                 <chr> …
$ `WB incomeLevel`                                                                                                                 <chr> …
$ `WB latitude`                                                                                                                    <dbl> …
$ `WB longitude`                                                                                                                   <dbl> …
$ `Advanced Economies`                                                                                                             <dbl> …
$ G7                                                                                                                               <dbl> …
$ `Euro area (member states)`                                                                                                      <dbl> …
$ `Other Advanced Economies (Advanced Economies excluding G7 and Euro Area countries)`                                             <dbl> …
$ `Other Advanced Economies (Advanced Economies excluding U.S., Euro Area countries, and Japan)`                                   <dbl> …
$ `Emerging and developing economies`                                                                                              <dbl> …
$ `Caucasus and Central Asia (CCA)`                                                                                                <dbl> …
$ `Emerging and Developing Asia`                                                                                                   <dbl> …
$ `Emerging and Developing Asia excl. China and India`                                                                             <dbl> …
$ `ASEAN-5`                                                                                                                        <dbl> …
$ `Emerging and Developing Europe`                                                                                                 <dbl> …
$ `Latin America and the Caribbean`                                                                                                <dbl> …
$ `Middle East and Central Asia`                                                                                                   <dbl> …
$ `Middle East and North Africa`                                                                                                   <dbl> …
$ `Middle East, North Africa, Afghanistan, and Pakistan`                                                                           <dbl> …
$ `Sub-Sahara Africa`                                                                                                              <dbl> …
$ `Emerging Market and Developing Economies by Source of Export Earnings: Fuel`                                                    <dbl> …
$ `Emerging Market and Developing Economies by Source of Export Earnings: Nonfuel`                                                 <dbl> …
$ `Emerging Market and Developing Economies by Source of Export Earnings: Manufactures`                                            <dbl> …
$ `Emerging Market and Developing Economies by Source of Export Earnings: Primary Products (excluding Fuel)`                       <dbl> …
$ `Emerging Market and Developing Economies by Source of Export Earnings: Services (including Income, Transfers)`                  <dbl> …
$ `Emerging Market and Developing Economies by Source of Export Earnings: Diversified`                                             <dbl> …
$ `Emerging Market and Developing Economies by External Financing: Net Creditors`                                                  <dbl> …
$ `Emerging Market and Developing Economies by External Financing: Net Debtors`                                                    <dbl> …
$ `Emerging Market and Developing Economies by External Financing: Net Debtors with Arrears and/or Rescheduling During 2019-23`    <dbl> …
$ `Emerging Market and Developing Economies by External Financing: Net Debtors without Arrears and/or Rescheduling During 2019-23` <dbl> …
$ `Emerging Market and Middle-Income Economies`                                                                                    <dbl> …
$ `Emerging Market and Developing Economies: Low Income Developing Countries`                                                      <dbl> …
$ `Heavily Indebted Poor Countries (HIPC)`                                                                                         <dbl> …
$ `European Union`                                                                                                                 <dbl> …

Using the datasets available in IMF Datatools

Let’s now download some series directly from these databases.

Using EcOS and EDI data

To download the appropriate series, make sure to specify the country code and indicator, for example, 111 for the USA, and NGDP for gross domestic product. Let’s try to download some WEO data.

First let’s start with WEO published data.

#Download WEO Published data for NGDP for country code 111, USA. 
df <-  imf_datatools$get_ecos_sdmx_data('WEO_WEO_PUBLISHED', '111', 'NGDP')

#You can quickly glance at the tail end of the data 
tail(df)
              111NGDP.A
2025-01-01 3.050722e+13
2026-01-01 3.171764e+13
2027-01-01 3.294171e+13
2028-01-01 3.434213e+13
2029-01-01 3.571282e+13
2030-01-01 3.715309e+13

You will notice that the numbers are a little difficult to interpret, as the units are dollars and they are shown in scientific notation. Let’s change the scale to the one used in the WEO (billions).

#Download WEO Published data for NGDP for country code 111, USA. 
df <-  imf_datatools$get_ecos_sdmx_data('WEO_WEO_PUBLISHED', '111', 'NGDP', scale='ecos')

#Quickly glance at the tail end of the data 
tail(df)
           111NGDP.A
2025-01-01  30507.22
2026-01-01  31717.64
2027-01-01  32941.71
2028-01-01  34342.13
2029-01-01  35712.82
2030-01-01  37153.09

Now take a closer look at a specific frequency.

#Download this same data, but at a quarterly frequency
df  <-  imf_datatools$get_ecos_sdmx_data('WEO_WEO_PUBLISHED','111', 'NGDP', scale='ecos', freq='Q')

#Quickly glance at the tail end of the data
tail(df)
           111NGDP.Q
2025-07-01  30680.70
2025-10-01  31006.97
2026-01-01  31277.33
2026-04-01  31572.19
2026-07-01  31865.61
2026-10-01  32155.45

Finally, download multiple countries and series at once.

#Download multiple countries and series in one command from ECOS 
df  <-  imf_datatools$get_ecos_sdmx_data('WEO_WEO_PUBLISHED',c('111', '193'), c('NGDP', 'GGR'), scale='ecos')

#Quickly glance at the tail end of the data
tail(df)
            111GGR.A 111NGDP.A 193GGR.A 193NGDP.A
2025-01-01  9576.032  30507.22 1020.056  2818.239
2026-01-01 10312.742  31717.64 1071.168  2945.565
2027-01-01 10789.839  32941.71 1118.061  3085.038
2028-01-01 11129.959  34342.13 1166.897  3229.983
2029-01-01 11507.495  35712.82 1221.181  3380.686
2030-01-01 11981.010  37153.09 1278.539  3538.743

Using Haver data

For Haver data, make sure to specify the series and the database, such as GDP@USECON.

#Download Haver series for one country 
df  <-  imf_datatools$get_haver_data('GDP@USECON')

#Quickly glance at the tail end of the data
tail(df)
           GDP@USECON
2023-10-01    28297.0
2024-01-01    28624.1
2024-04-01    29016.7
2024-07-01    29374.9
2024-10-01    29723.9
2025-01-01    29962.0

You can also download multiple series in one command, but make sure they have compatible scales.

#Download multiple series in one command
df <- imf_datatools$get_haver_data(c('PJ4@USECON', 'PCUP@USECON'))

#Quickly glance at the tail end of the data
tail(df)
           PJ4@USECON PCUP@USECON
2024-12-01        0.5         0.4
2025-01-01        0.7         0.5
2025-02-01        0.1         0.2
2025-03-01       -0.1        -0.1
2025-04-01       -0.2         0.2
2025-05-01        0.1         0.1

If you need more info on the scales, you can easily browse the metadata for an indicator.

#Obtain details on the metadata for a particular series
metadata <- imf_datatools$haver_utilities$get_haver_metadata('GDP@USECON')

#Quickly glance at the tail end the metadata
tail(metadata)
    database  startdate    enddate frequency
gdp   usecon 1947-03-31 2025-03-31         Q
                              descriptor numobs         datetimemod magnitude
gdp Gross Domestic Product (SAAR, Bil.$)    313 2025-06-26 12:32:00         9
    decprecision diftype aggtype datatype group geography1 geography2
gdp            1       0     AVG      US$   N01        111           
    shortsource                  longsource
gdp         BEA Bureau of Economic Analysis

Using World Bank data

You can also access World Bank data, but make sure you denote country abbreviation instead of IMF country code.

# Download series for population in USA from World Bank DAta
df  <-  imf_datatools$get_worldbank_data('SP.POP.TOTL', 'USA')

#Quickly glance at the tail end of the data
tail(df)
           USA.SP.POP.TOTL
2019-01-01       330226227
2020-01-01       331577720
2021-01-01       332099760
2022-01-01       334017321
2023-01-01       336806231
2024-01-01       340110988

Using Bloomberg data

Bloomberg data typically accessible via ECData can also be accessed, ensuring the correct nomenclature.

#Download daily Vix Index Bloomberg data
df  <-  imf_datatools$get_ecos_bloomberg_data('VIX Index', 'PX_LAST')

#Quickly glance at the tail end of the data
tail(df)
           VIX IndexPX_LAST.D
2025-07-02              16.64
2025-07-03              16.38
2025-07-04              17.48
2025-07-05                NaN
2025-07-06                NaN
2025-07-07              17.79

You have now successfully downloaded and installed IMF Datatools, understood the available datasets, and downloaded relevant series.

Using iData

The new Fund‐wide iData (2025) will replaces EcOS, EDI, and can be accessed via the reticulate package. This is slightly different than the other sites as it includes both publicly available and private datasets. Let’s explore those below.

In order to access publicly available datasets, you need to specify that no token is needed via stating “FALSE” below. Let’s explore how to see the public datasets in iData below.

#alias the imported Python module for brevity of calls
dt <- imf_datatools

#Public datasets (no token needed)
dt$idata_utilities$PRIVATE <- FALSE
head(dt$idata_utilities$get_databases())
                                                                                 name
IMF.STA:PPI                                                Producer Price Index (PPI)
IMF.STA:WPCPER   Crypto-based Parallel Exchange Rates (Working Paper dataset WP-CPER)
IMF.FAD:PSBS                                       Public Sector Balance Sheet (PSBS)
IMF.STA:GFS_SFCP                                 GFS Stocks and Flows by Counterparty
IMF.RES:WEO                                              World Economic Outlook (WEO)
IMF.RES:EQ                                                        Export Quality (EQ)
                 Agency ID Resource ID Latest Version                Unique ID
IMF.STA:PPI        IMF.STA         PPI          3.0.0       IMF.STA:PPI(3.0.0)
IMF.STA:WPCPER     IMF.STA      WPCPER          5.0.1    IMF.STA:WPCPER(5.0.1)
IMF.FAD:PSBS       IMF.FAD        PSBS          2.0.0      IMF.FAD:PSBS(2.0.0)
IMF.STA:GFS_SFCP   IMF.STA    GFS_SFCP         10.0.0 IMF.STA:GFS_SFCP(10.0.0)
IMF.RES:WEO        IMF.RES         WEO          6.0.0       IMF.RES:WEO(6.0.0)
IMF.RES:EQ         IMF.RES          EQ          2.0.0        IMF.RES:EQ(2.0.0)

You can also list your private datasets, which you have access to.

#Private datasets based on your access level
dt$idata_utilities$PRIVATE <- TRUE
head(dt$idata_utilities$get_databases(refresh = TRUE))
                                                                                     name
IMF.AFR:AFRREO                      Sub-Saharan Africa Regional Economic Outlook (AFRREO)
IMF.STA:MFS_OFC Monetary and Financial Statistics (MFS_OFC): Other Financial Corporations
IMF.RES:FSI                                                  Financial Stress Index (FSI)
IMF.STA:PI                                                        Production Indexes (PI)
IMF.FAD:HPD                                                  Historical Public Debt (HPD)
IMF.MCD:MCDREO            Middle East and Central Asia Regional Economic Outlook (MCDREO)
                Agency ID Resource ID Latest Version              Unique ID
IMF.AFR:AFRREO    IMF.AFR      AFRREO          6.0.1  IMF.AFR:AFRREO(6.0.1)
IMF.STA:MFS_OFC   IMF.STA     MFS_OFC          6.0.0 IMF.STA:MFS_OFC(6.0.0)
IMF.RES:FSI       IMF.RES         FSI          3.0.1     IMF.RES:FSI(3.0.1)
IMF.STA:PI        IMF.STA          PI          2.0.0      IMF.STA:PI(2.0.0)
IMF.FAD:HPD       IMF.FAD         HPD          1.0.0     IMF.FAD:HPD(1.0.0)
IMF.MCD:MCDREO    IMF.MCD      MCDREO          7.0.1  IMF.MCD:MCDREO(7.0.1)

Once you’ve picked a database (e.g. "IMF.STA:CPI"), you can also check its structure.

  • get_dimensions() lists all the ways you can slice your data, i.e., by country, frequency etc.

    dims <- dt$idata_utilities$get_dimensions("IMF.STA:CPI")
    print(dims)
                                      Description Dimension Order
    COUNTRY                               Country               0
    INDEX_TYPE                         Index type               1
    COICOP_1999              Expenditure Category               2
    TYPE_OF_TRANSFORMATION Type of Transformation               3
    FREQUENCY                           Frequency               4
  • get_dimension_values() this function provides the full list of entries within a specific dimension, e.g., Country.

    vals <- dt$idata_utilities$get_dimension_values("IMF.STA:CPI", "COUNTRY")

Retrieving a series

Once you have itentified your dataset and explored its dimensions you can build a query by joining dimension codes with period. Leave the key specifications empty to include all values as shown below.

# Example: CPI level for USA & JPN monthly (_T = level, M = monthly)
key <- "USA+JPN.CPI._T..M"
df  <- dt$idata_utilities$get_idata_data("IMF.STA:CPI", key)
tail(df)
           JPN.CPI._T.IX.M JPN.CPI._T.POP_PCH_PA_PT.M JPN.CPI._T.SRP_2010_IX.M
2024-12-01           110.7                  0.6363636                 116.7516
2025-01-01           111.2                  0.4516712                 117.2790
2025-02-01           110.8                 -0.3597122                 116.8571
2025-03-01           111.1                  0.2707581                 117.1735
2025-04-01           111.5                  0.3600360                 117.5954
2025-05-01           111.8                  0.2690583                 117.9118
           JPN.CPI._T.YOY_PCH_PA_PT.M USA.CPI._T.IX.M
2024-12-01                   3.651685        144.7361
2025-01-01                   4.022451        145.6836
2025-02-01                   3.648269        146.3306
2025-03-01                   3.638060        146.6595
2025-04-01                   3.528319        147.1162
2025-05-01                   3.422757        147.4235
           USA.CPI._T.POP_PCH_PA_PT.M USA.CPI._T.SRP_2010_IX.M
2024-12-01                  0.0355000                 144.7361
2025-01-01                  0.6546157                 145.6836
2025-02-01                  0.4441702                 146.3306
2025-03-01                  0.2247071                 146.6595
2025-04-01                  0.3114456                 147.1162
2025-05-01                  0.2088561                 147.4235
           USA.CPI._T.YOY_PCH_PA_PT.M
2024-12-01                   2.888057
2025-01-01                   3.000483
2025-02-01                   2.821549
2025-03-01                   2.390725
2025-04-01                   2.311289
2025-05-01                   2.354897
  • To obtain data in long format, add longformat = TRUE.

    # Long
    lf <- dt$idata_utilities$get_idata_data("IMF.STA:CPI", key, longformat = TRUE)
    tail(lf)
         COUNTRY INDEX_TYPE COICOP_1999 TYPE_OF_TRANSFORMATION FREQUENCY      dates
    6729     USA        CPI          _T          YOY_PCH_PA_PT         M 2024-12-01
    6730     USA        CPI          _T          YOY_PCH_PA_PT         M 2025-01-01
    6731     USA        CPI          _T          YOY_PCH_PA_PT         M 2025-02-01
    6732     USA        CPI          _T          YOY_PCH_PA_PT         M 2025-03-01
    6733     USA        CPI          _T          YOY_PCH_PA_PT         M 2025-04-01
    6734     USA        CPI          _T          YOY_PCH_PA_PT         M 2025-05-01
         OBS_VALUE
    6729  2.888057
    6730  3.000483
    6731  2.821549
    6732  2.390725
    6733  2.311289
    6734  2.354897
  • To pivot by a dimension (e.g. COUNTRY), use panel = "COUNTRY"

    # Panel by country
    pf <- dt$idata_utilities$get_idata_data("IMF.STA:CPI", key, panel = "COUNTRY")
    tail(pf)
         COUNTRY      dates CPI._T.IX.M CPI._T.POP_PCH_PA_PT.M CPI._T.SRP_2010_IX.M
    1685     USA 2024-12-01    144.7361              0.0355000             144.7361
    1686     USA 2025-01-01    145.6836              0.6546157             145.6836
    1687     USA 2025-02-01    146.3306              0.4441702             146.3306
    1688     USA 2025-03-01    146.6595              0.2247071             146.6595
    1689     USA 2025-04-01    147.1162              0.3114456             147.1162
    1690     USA 2025-05-01    147.4235              0.2088561             147.4235
         CPI._T.YOY_PCH_PA_PT.M
    1685               2.888057
    1686               3.000483
    1687               2.821549
    1688               2.390725
    1689               2.311289
    1690               2.354897

IMF Datatools allows you to easily browse, inspect, and retrieve IMF datasets in R.